New insights on stress rotations from a forward regional model of the San Andreas fault system near its Big Bend in southern California D. D. Fitzenz U.S. Geological Survey, Menlo Park, California, USA S. A. Miller Department of Earth Sciences, Swiss Federal Institute of Technology (ETHZ), Zürich, Switzerland D. D. Fitzenz, U.S. Geological Survey MS-977, Menlo Park CA 94025, USA; and S. A. Miller, Department of Earth Sciences, Swiss Federal Institute of Technology, ETH Hönggerberg, CH 8093 Zürich, Switzerland. (fitzenz@usgs.gov) 2 Abstract. Understanding the stress field surrounding and driving active fault systems is an important component of mechanistic seismic hazard assessment. We develop and present results from a time-forward 3-dimensional model of the San Andreas Fault system near its Big Bend in Southern California. The model boundary conditions are assessed by comparing model and observed tectonic regimes. The model of earthquake generation along two fault segments is used to target measurable properties (e.g., stress orientations, heat flow) that may allow inferences on the stress state on the faults. It is a quasi-static model, where GPS-constrained tectonic loading drives faults modelled as mostly sealed viscoelastic bodies embedded in an elastic halfspace subjected to compaction and shear creep. A transpressive tectonic regime develops southwest of the model Bend as a result of the tectonic loading and migrates toward the Bend due to fault-slip. The strength of the model faults is assessed based on stress orientations, stress drop and overpressures, showing a departure in the behavior of 3D finite faults compared to models of 1D or homogeneous infinite faults. At a smaller scale, stress transfers from faultslip transiently induce significant perturbations in the local stress tensors (where the slip profile is very heterogeneous). These stress rotations disappear when subsequent model earthquakes smooth the slip profile. Maps of maximum absolute shear stress emphasize both that 1) future models should include a more continuous representation of the faults, and 2) that hydrostatically pressured intact rock is very difficult to break when no material weakness is considered. #### 1. Introduction Plate boundaries are zones of complex deformation over widths of tens or hundreds of kilometers, and may contain multiple tectonic regimes. Insight into the forces, (e.g., stresses), acting on these fault systems is therefore essential to understanding the mechanics of their deformation. Spatial patterns and temporal evolution of both stress orientation and absolute magnitude are needed to determine what complexity in the stress orientations results from the boundary conditions and geometry alone and how the fault behavior feeds back on the stress distribution. That is, when, how, and for how long the seismic behavior on the faults perturbs the surrounding stress patterns. A better understanding of these two classes of stress analysis would lead to more insight into two much debated issues; the validity of the hypotheses for the inversion of focal mechanisms to infer stress orientations [e.g., the assumption of relatively homogeneous stress over space and time, Michael, 1987, and the link between the strength of the faults and the orientation of the maximum stresses with respect to their strike. Borehole measurements can provide information on the subsurface stress state [Brereton and Muller, 1991; Zoback and Healy, 1992; Tsukahara et al., 1996; Ikeda et al., 2001, and stress orientations at seismogenic depths can be determined from earthquake focal mechanisms [Hardebeck and Hauksson, 1999, 2001; Provost and Houston, 2001; Townend and Zoback, 2001]. However, no direct evaluation of absolute stress values is possible in the 5 to 20 km depth interval containing the hypocenters of most earthquakes. In the present modelling study, we focus on a strike-slip plate boundary with a convergent component to better constrain the state of stress along the San Andreas Fault (SAF). To provide a testable system, we chose the simplified geometry of the Big Bend in the San Andreas fault in southern California. The purpose of this paper is twofold. First, we develop a tectonic-scale model of the southern SAF system to investigate boundary conditions that result in the development of the observed stress, and subsequent tectonic, regimes. Second, once the boundary conditions are determined, we investigate the longterm slip behavior along two major strike-slip fault segments representing the SAF north and south of its Big Bend. We determine subsequent optimal orientations for faulting in the region and the effects of the fault system behavior on stress orientations as well as the conditions required to break intact rock. The model simulations assume a system where fresh fractures develop in response to the applied boundary conditions in an intact crust under hydrostatic fluid pressure. The faults that develop then assume properties of a frictional interface, with a lower friction coefficient. After sufficient slip has accumulated along these strong faults, ductile creep and compaction are incorporated to model lowpermeability fault zones that develop along high-slip fault zones [Faulkner and Rutter, 2001. These mature viscoelastic fault zones differ from the initial fault in that they tend to weaken with time [Fitzenz and Miller, 2003], therefore allowing a comparison of the stress orientation results obtained for different model fault fluid pressures. FITZENZ AND MILLER: STRESS ORIENTATIONS AND FORWARD FAULT MODELING # 2. Tectonic set-up and test of the boundary conditions The San Andreas Fault system is 1300 km long. In this study we model the portion of this system centered at a location south of the Carrizo plains called the Big Bend because there the fault exhibits a large change in strike. The creeping section of the SAF is north of our model region and its behavior is not discussed in the present study. Since our aim will be to study the behavior of the fault system itself, we chose the simplest boundary conditions that produce tectonic domains close to those observed in 4 the modeled area. The model plate boundary has the simplified geometry of the SAF and the thickness of the seismogenic layer is 18.5 km [Zhu and Helmberger, 1996, i.e., the focal depths of most earthquakes in southern California in the 1991-1999 time period are within the 0-18 km interval, with a number of focal depth below 15 km. The tectonic loading is decomposed into two main components (Figure 1b). First, the tectonic shear loading is applied as a dislocation on a horizontal plane at the base of the model north American plate (at 18.5 km depth) and is parallel to the plate boundary north of the Big Bend (i.e., the Pacific plate is fixed). The plate velocity is 35 mm yr⁻¹. Second, the east-west compression north of the Bend (due to motion of the Sierra Nevada block) is approximated by a vertical dislocation surface parallel to the northern strike of the plate boundary and applied at the far-field boundary (at 400 km east of the plate boundary). It results in fault-normal compression rates of about 3 mm yr⁻¹ [Argus and Gordon, 1991; Prescott et al., 2001. South of the Bend, the Mojave block does not show such an eastwest motion see the crustal velocity map v3 issued by the Southern California Earthquake Center, Shen et al., 2003]. To test the model boundary conditions, we apply a displacement on the model boundaries corresponding to 100,000 years of tectonic loading and we compare calculated and observed tectonic regimes. Because we consider a linear elastic half-space, t years of tectonic loading at a velocity V expressed in mm yr⁻¹ is equivalent to a unique displacement of $V \times t$ mm. Using an approach similar to that of *Simpson* [1997], we use the magnitude and orientation of the principal stresses to infer tectonic regimes in a crust with no pre-existing faults. The stress tensor is calculated on a horizontal grid at mid-seismogenic depth (8.5) #### FITZENZ AND MILLER: STRESS ORIENTATIONS AND FORWARD FAULT MODELING km) by applying the analytical solution of Okada [85,92] to the two basal and far-field dislocation planes undergoing a slip of 100,000 years times the GPS-constrained slip rates. We add the isotropic lithostatic stress (the overburden) by assuming a homogeneous rock density of 2700 kg m⁻³ and a flat topography. The calculated tectonic regime at a given location on the grid is obtained by combining the vertical principal stress and the ratio $R = \frac{\sigma_2 - \sigma_3}{\sigma_1 - \sigma_3}$, where σ_1 , σ_2 , and σ_3 are the principal stresses. The R ratio takes values continuously between 0 and 1. We identify characteristic tectonic domains corresponding to $R \sim 0$, $R \sim 0.5$, and $R \sim 1$ for each vertical principal stress (i.e., end member cases, also presented in Table 1). Throughout the paper, when discussing map views of the model area, the x axis is parallel to the plate boundary north of the Bend and x = 0 at the Bend, whereas the y axis points to the East and y = 0 along the plate boundary north of the Bend. Figure 2 shows that the plate boundary lies in a strike-slip regime, while compressive to transpressive regimes develop west of the southern part of the plate boundary (for x > 0), reminiscent of the Transverse Ranges (see figure 1a). A large area east of the plate boundary (for x > 0) also exhibits a transpressive regime. However, since we did not include the specific boundary conditions to account for the presence of the East California Shear Zone, we will not discuss this last feature. The Coulomb failure stress is defined as $CFS = \tau - \mu \times \sigma_{eff} - c$, where τ and σ_{eff} are the shear and effective normal effective stress acting on defined planes. We use this failure criterion to identify where faults would develop in the model region in response to
the chosen boundary conditions. The initial strength of the model is assumed that of intact rock, with a high friction coefficient ($\mu = 0.9$), an assumed cohesion of c = 20MPa, and 6 hydrostatic pore pressure [Townend and Zoback, 2000]. Figure 3 shows a map of CFS calculated on optimally oriented planes for new fractures at 8.5 km depth (see section 5.3 for the details of the 3D calculation of optimal orientation for faulting). White corresponds to $CFS \sim 0$. A narrow region along the plate boundary is shown to be the first area to accumulate enough stresses to reach the failure criterion. In particular, the high values of CFS (up to 400 MPa) north of the Bend show that a fault would be created there well before 100,000 years of plate motion. The plate boundary region south of the Bend, being oblique to the major plate motion direction, develops very high normal stresses that inhibit this part of the plate boundary from breaking as early as its northern counterpart, despite shear stresses of the same order of magnitude. Indeed, the shear stress loading rate on the southern plate boundary is about 94 % of that on the northern part (i.e., same source of deviatoric stress as for the northern region, but resolved on a plane striking at 20° to the direction of shear loading). However, if the northern part failed in earthquakes, stress transfer from this slip would be likely to load the southern part to failure. #### 3. Fault models The evolved stress state developed during the initial loading phase was shown to be consistent with creating a fault segment north of the Bend and initiating the creation of another one south of the Bend. Therefore, the model fault system includes two 200 km long right-lateral strike-slip fault segments, discretized into subfaults, with a change in strike of 20°. The two fault segments are separated by a region of intact rock as explained below and shown on Figure 1. The reason behind the choice of an intact Big Bend region between the two prescribed fault segments is twofold. Numerically, this prevents the occurrence of any singularity 8 in stresses that might result from slip on dislocations intersecting at an angle (from the two fault segments and the basal dislocation). It also provides an interesting test of what it would take to break a long-locked, lithified fault segment located between two active fault segments. Although not an appropriate description of the San Andreas fault at this location, this geometry allows us to test in a generic way what it would take to link up two active fault segments separated by intact or lithified rock. Therefore, even though this (initial) geometry does not reflect the present-day Big Bend tectonics, its evolution with time in the model has interesting general implications for the strength of the crust (i.e., for other fault systems). We do not model the complex process of fracture nucleation and growth, and instead simplify the problem by assuming that the fracturing associated with the creation of the model faults reduces their frictional resistance to that of a sliding interface (e.g. $\mu=0.6$) with zero cohesion, and that it reduces significantly the shear stress on the faults, so that zero initial shear stress is prescribed on the model faults for simplicity. A direct drawback of this approach is the lack of information on the state of stress in the crust surrounding the faults at t=0 in the simulation. We saw on Figure 3 that the Coulomb Failure Stress was highly localized in a narrow (40 km, or twice the depth at which the basal shear drag is applied) band centered on the faults, showing that even in 100,000 years, the stress accumulation is not large enough to break intact rock at a distance greater than 20 km from the plate boundary (see discussion in section 7). In the long-term simulation, at t=0, the crust is initially submitted to the lithostatic stress only and the shear stress builds up as the result of tectonic loading, for t>0. The limitations of this assumption are discussed in each result section. Fault slip and its effect on the surrounding stress state is investigated over an ≈ 4000 year interval. The details of the time evolution of the model faults properties are given and discussed in section 4. An improvement to the model would be to impose the fault geometry of the two SAF segments while ascribing the properties of intact rock to each subfault (e.g., high friction and non-zero cohesion) to monitor the time to the fracture, reducing the subfault properties to those of a frictional interface only once the initial failure has occurred. This would allow the stresses developed from plate motion to be maintained in the crust in a more accurate way provided a detailed handling of stress transfer associated with fracturing was incorporated. Other types of boundary conditions could also be tested. #### 3.1. Initial fault model The two SAF fault segments are discretized into subfaults measuring 2.0 km along strike by 0.5 km down-dip. The state of each cell is monitored during model simulations, and subfault properties include shear and normal stresses, porosity, pore pressure, fault zone width, and Skempton's coefficient. The model includes stress transfer between cells, undrained poroelastic effects, and coseismic pore pressure redistribution. The reader is referred to Fitzenz and Miller [2001] for a full description of the model and a discussion of the model assumptions and parameters. For completeness, the following three sections, and corresponding appendices, present a summary of the main features of the modeling. **3.1.1.** Elasticity and poroelasticity. In our model, faults are idealized by a displacement discontinuity (i.e., dislocation) across a surface (i.e., dislocation plane). Therefore, seismic slip on a fault plane is modeled as a slip vector acting on a dislocation plane. To calculate strain changes due to displacements (either interseismic at the boundaries of the model, i.e., tectonic loading, or coseismic on the subfaults) we use the analytical solution derived by Okada [1985, 1992]. We then calculate the resulting stresses with Hooke's law. The elastic modulii (compressibility and rigidity) are equal to 30 GPa. The mechanical behavior in rocks subjected to changes in either confining pressure or pore fluid pressure has commonly been cast in terms of the effective stress relationship [Terzaghi, 1923; Hubbert and Rubey, 1959], where the effective stress σ_{eff} is given by: $$\sigma_{eff} = \sigma_n - P_f \tag{1}$$ where σ_n is the normal stress acting on a frictional surface, and P_f is the pore pressure. Although this relationship can be used to calculate the strength at failure, it does not always represent the poroelastic loading properly. It appears to be valid in many porous permeable rocks, however, a more general expression for the static case is: $\sigma_{eff} = \sigma_n - \alpha P_f$ [Nur and Byerlee, 1971], where α is found empirically and can range from 0 to 1.0 for fractured and intact rocks. Measured values of α depend on the mineralogy of the sample, and whether it is drained or undrained [Morrow et al., 1994]. Lockner and Beeler [2003] also showed that α varies with effective confining pressure for sandstones. Although these deviations from equation (1) might be large depending on the geology and the processes of the fault zones, their study is beyond the scope of the present work, and $\alpha = 1$ is assumed throughout. Pore pressures increase due to a change in the mean confining pressure from a poroelastic effect approximated by $$\Delta P_f|_{\text{no flow}} = B \times \frac{\text{tr}(\Delta \sigma)}{3},$$ (2) where $\operatorname{tr}(\Delta\sigma)$ is the trace of the tensor of stress changes (positive in compression), and B is Skempton's coefficient. Equation 2 is applied in undrained conditions (no flow) on the cells of homogeneous pore pressure composing the model fault segments. Few values of Skempton's coefficient have been measured in fault zones. We chose B=0.6 [Talwani et al., 1999]. **3.1.2.** Hydraulic properties of the model faults. Interseismic pore pressure increases are allowed independently in each subfault by assuming an interseismic compaction rate, randomly distributed around $3\times10^{-6}~{\rm yr}^{-1}$ and ranging between $9\times10^{-7}~{\rm yr}^{-1}$ and 5×10^{-6} yr⁻¹. The hydraulic properties of the slipping region are assumed to change dramatically during the seismic event, resulting in a much greater hydraulic connectivity and subsequent fast pore pressure equilibration within the slipped patch [Sibson, 1992; Miller et al., 1996. The random compaction rate along the fault is the only imposed source of initial heterogeneity. Potentially important sources of pore pressure increase that we do not consider include a fluid source at depth [Rice, 1992; Gratier et al., 2003] and frictional heating [Andrews, 2002]. In contrast to Fitzenz and Miller [2001], where subfaults were completely sealed from each other, the subfaults now have a defined interseismic permeability. No flow is allowed out of the fault zone. The interseismic permeabilities of the model subfaults are computed as stated in Appendix A and range from $\sim 10^{-21}$ to $\sim 10^{-19}$ m², depending on the evolving porosity. These values are used in a finitedifference algorithm to calculate in-plane interseismic diffusion. Coseismic porosity production is modeled by frictional dilatancy and is assumed to be proportional to slip. Porosity production follows the model of *Sleep* [1995]: $$\frac{\partial \phi}{\partial \delta} = \frac{\beta_m (\phi_m - \phi)\tau}{W \phi_m \sigma_n},\tag{3}$$ where ϕ is the porosity created with slip δ , β_m is the fraction of energy that goes into the new crack creation, ϕ_m is the saturation porosity which limits the amount of crack porosity that can be generated (i.e., $\phi <
\phi_m$), τ and σ_n are the shear and normal stress acting on the slipped cell, and W is the fault zone width. The values for β_m , ϕ_m , and Wwere taken from Sleep [1995]. The porosity change is used to update the storage capacity $((\beta_{\phi} + \beta_f)\phi)$, i.e., pore and fluid compressibility times porosity) of the cells just before the redistribution of pore pressure. In addition, this coseismic change in the porosity of slipped cells yield interseismic pore pressure increase rates that vary with time via: $$\frac{\partial P_f}{\partial t} = \frac{-\dot{\phi}}{\phi(\beta_\phi + \beta_f)}.$$ (4) 3.1.3. Earthquake generation and propagation. The failure stress is the Coulomb failure stress that explicitly includes the pore pressure state. The initial static friction coefficient (μ_s) is taken as constant and uniform over the fault planes and is assumed to be 0.6. We treat the case in which strength heterogeneity only comes from variations in pore pressure. The quasi-static treatment of the modeling ensures that one cell reaches the failure criterion at the beginning of each time-step. Slip on that cell is calculated to correspond to an assumed stress drop (a percentage of the pre-failure shear stress, here chosen at 25 %). See *Miller et al.* [1999] for a discussion of the influence of this assumption on the overall fault behaviour. Quasi-static, instantaneous stress transfer from the failure of this cell (still in undrained conditions) can initiate failure of other cells, and the model is then cycled until all cells are below the failure condition. When the system is stable with respect to the stress state, pore pressures are redistributed within the slipped patches and may induce additional failures. If so, the algorithm returns to the "undrained rupture" loop just described. This sequence is then cycled until the system is in equilibrium. These (quasi-static) rupture loops ignore wave propagation but provide insight into the propagation of the ruptures and coseismic stress transfers. The total slip on all subfaults of a fault segment during a given time-step is used to calculate first the scalar seismic moment of the event, and then its magnitude. Note that when slip occurs on a cell, its friction reduces to a dynamic value ($\mu_d = 0.5$) for the duration of that event. This switch approximates a slip-weakening model for friction and is discussed by Miller [2002]. After the event, friction is reset to the static value, because computing a time-dependent strength recovery would add another level of iteration when determining the time step necessary to initiate one hypocenter (e.g., rigorously quasi-static). Note also that although both the compaction rates and individual stress drops are arbitrary, $Miller\ et\ al.$ [1999] showed that changing these values does not change the overall behavior of the fault. $Fitzenz\ and\ Miller\ [2001]$ also showed that although cells of higher compaction rates are more likely to be hypocenters, the final size of the event is independent of this arbitrary random distribution, but depends mostly on the level of organisation of the stress state on the fault plane at a given time. #### 3.2. Time-dependent compaction and shear creep After model conditioning, i.e., once a stress state is reached on the faults that allows for the propagation of the first large ruptures, the fault properties are those of a ductile fault core, hydraulically disconnected from the surrounding rocks by a quasi-impermeable #### 14 FITZENZ AND MILLER: STRESS ORIENTATIONS AND FORWARD FAULT MODELING narrow seal. A small diffusive leakage out of the fault zone during interseismic periods is allowed. Ductile compaction depends on effective stress and a porosity-dependent "bulk" viscosity term, shear creep varies with shear stress, fault zone width, and a porosity-dependent shear viscosity term as described in *Fitzenz and Miller* [2003] and as summarized in Appendix B for the reader's convenience. Ideally, creep compaction should depend on porosity, effective confining stress, differential stress, temperature, rock type, grain-size distribution, and the nature of the pore fluid, but no such model is currently available. # 4. Evolved stress state and seismicity on the model faults In order to understand the time evolution of the tectonics of the (model) region (as discussed in section 5) it is important to study both the stress and pore pressure evolution in the prescribed faults, and the generated synthetic seismicity. Figures 4 and 5 show the time evolution of the stress state on both the northern and the southern fault segments, respectively. Each point of these curves represents the property averaged over the whole fault plane (both in depth and along strike). The seismicity timelines and statistics are shown on Figure 6. The three main phases in the model fault history are (1) a continuous stress build-up for the first \sim 1800 yr due to plate motion loading; (2) the readjustment and self-organization of the stress state, evidenced by the occurrence of the first large ruptures (until $t \sim 3000$ yr), and (3) fault weakening due to the onset of ductile compaction. #### 4.1. Phases 1 and 2 On the northern fault, the first phase is characterized by a steady increase in shear stress τ from tectonic loading, and a slight decrease in effective stress σ_{eff} due to pore compaction (Figure 4). Fault overpressure is described by the factor $\lambda = P_f/\sigma_n$, where P_f and σ_n are pore pressure and normal stress, respectively. On the Southern fault, λ and σ_{eff} appear constant due to the oblique orientation of the fault with respect to the basal shear drag. In this case pore pressure increases from compaction are counterbalanced by the increase in tectonic normal stress. The seismicity (Figure 6) is low on both faults during this first phase. The second phase shows an increase in seismicity and the first large events $(M_w > 7)$ occur at $t \sim 2500$ yr and $t \sim 3000$ yr on the northern and the southern segment, respectively. The fact that the northern segment fails first is related to its lower initial frictional strength (e.g., lower normal stress build-up rate than that of the southern segment). #### 4.2. Phase 3 At t = 3750 yr, when Phase 2 is stopped, both faults sustain high shear stresses (i.e., strong faults). Shear creep and ductile compaction are introduced. The high effective stresses lead to pore pressure increase rates (Appendix B, equation 1) much larger than the shear stress increase rate, promoted by tectonic loading but reduced by shear creep. The combined effects of shear creep and compaction lead to fault weakening. During this phase, the density of medium size events $(4.5 < M_w < 6)$ increases dramatically, very rapidly on the southern segment and more progressively on the northern segment (Figure 6). On the northern fault segment, large events reaching the surface allow for large pore pressure drops, resulting in a fault behavior comparable to that obtained in the 1-D fault model of Sleep and Blanpied [1992]. Large pore pressure drops are observed when ruptures reach the surface and are controlled by the hydrostatic boundary condition. When the ruptures do not reach the surface, fluids can not be expelled, overpressures are maintained, and the fault evolves to a weak fault (i.e., the fault can not sustain high shear stresses). The fact that the value of λ averaged over the fault planes is ~ 0.55 on both faults at the end of the simulation should not hide the fact that it locally reaches values as high as 0.60 on the Northern fault and 0.70 to 0.75 on the Southern fault, at depths between 6 and 18 km. Note the creep rate (averaged over the fault plane) on the northern fault segment (7.6 mm vr⁻¹) is greater than on the southern one (5 mm vr⁻¹). Indeed, both shear stress and fault zone width are larger on the northern segment, because during Phase 3 the fault is stronger (i.e., can sustain higher shear stresses) and undergoes larger slip at depth (see Appendix B, equation 2). For these reasons, creep slip is maximum at depth, and at 18 km depth the accumulated creep slip over 300 years yields average creep rates on the order of plate velocity. For interest, we monitored the stress and pore pressure state on a blind dipping fault oriented 25° to the Northern fault between x = -200 and x = -109 km to mimic the fold and thrust belt sub-parallel to the Southern part of the Central SAF. The stress state shows very low stresses and that incipient faulting would be a late-time feature. As a reminder, the Northern model fault is only 200 km long, and therefore does not encompass the creeping segment of the SAF. #### 5. Resulting regional tectonic evolution In this section we explore the spatial and temporal stress orientation patterns to address some important issues about interpreting stress orientations around active fault zones. The first step is to be able to determine what level of complexity in the stress orientations results from the boundary conditions and geometry alone. The second is to determine how the fault behavior feeds back on the stress distribution. That is, when, how, and for how long the seismic behavior on the faults perturbs the surrounding stress patterns, and how the orientation of the maximum compressive stresses relates to fault strength. Rice [1992] showed theoretically how stresses can rotate from high angles outside of the fault-zone to low ($\sim 30-40\circ$) within the fault zone due to high pore pressure in a fault-zone that undergoes some plastic deformation. However, what controls the spatial and temporal patterns of stress orientations surrounding 3D fault surfaces undergoing heterogeneous, not-elliptical slip distributions is still an open question. Our approach is to study the stress state evolution in the framework of the regional model. Section 2
described the effects of the loading boundary conditions and the geometry of the plate boundary alone in terms of tectonic regimes (or stress state) in the absence of faults. It shows a great spatial differentiation between areas in pure strike-slip regime, and areas in transpressive to compressive regimes, on both sides of the southern part of the plate boundary. A comparison of these patterns with those obtained after several thousands of years of synthetic seismicity as well as large-scale tectonic loading show both large-scale and small scale differences. We interpret them in terms of the cumulative right-lateral fault slip, seismic slip and overpressure profiles at the depth of the calculation, and the frequency-size statistics of the model earthquakes. # 5.1. Tectonic regimes We compare Figure 2 with the map of tectonic regimes calculated after 4,000 years of fault model simulation, to evaluate the feedback of fault behavior on the local to regional stress state. Figure 7 shows that the transpressive tectonic regime that developed both south-west and south east of the model Big Bend as a result of the loading boundary conditions (Figure 2) now migrates north toward the Bend due to the 4,000 years of evolution of the stress state and the seismicity on the two model faults. The pattern mostly reflects the fact that both model faults are of finite-length and right-lateral (i.e., fault motion generates quadrants of compression and dilation). With accumulated right lateral slip, the corresponding areas of increased compression merge and progressively change the local tectonic regime from strike-slip to transpressive. Note that the extensional area southwest of the southern fault (black) is probably an artifact of the (coarse) discretization of the model basal loading dislocation. Similar extensional patches are already present in the model with no fault (as in section 2) when tectonic regimes are calculated at greater depth (e.g., 15 km, not shown here). This will be addressed in future studies where a triangular dislocation surface will replace the set of rectangular dislocations now used. #### 5.2. Stress build-up in the model region and stress orientations Figure 8 shows the accumulated shear stress in the model due to the combined effect of plate motion and fault ruptures. This property is quantified by the maximum shear stress, i.e., $\tau_{max} = (\sigma_1 - \sigma_3)/2$, and it is a useful measure since no assumption on (fault plane) orientations is needed. Although the level of shear stress decreases rapidly with distance from the plate boundary, stress transfer from previous earthquakes, as well as the overall slip deficit locally maintain a high maximum shear stress near the faults (up to 70 MPa). Low values close to the faults reflect the stress drops associated with large earthquakes, and the heterogeneity of the stress field along the faults reflect the heterogeneity in slip (see discussion below). Exceptionally high values are reached at the terminations of the faults, in particular at the bend in the plate boundary (with values up to 120 MPa). The isolated red points show singularities in the stress field at the tips of a dislocation, i.e., the grid point is very close to the boundary of a slipping cell. At distances greater than about 50 km from the faults, the level of shear stress is extremely low, showing that 4,000 years of tectonic loading are not enough to critically stress the crust surrounding the model plate boundary, namely because of the stabilizing effect of earthquakes. A more consistent approach would be to add the level of stress in the crust present at the creation of the two faults. Even though the level of stress might then be larger close to the plate boundary, it is not likely to be the case far from it. The maximum horizontal stress $\sigma_H max$ is computed at 8.5 km depth. It is compressive in most of the model region. Figure 8b shows the orientation of $\sigma_H max$ with respect to the x-axis (strike of the northern segment). $\sigma_H max$ is consistently oriented $\sim 45^o$ to the northern segment, and $\sim 55^o$ to the southern segment in a 20 km wide band. There is a gradient from the far-field angles (y > 0) down to the near fault values (\sim from -45° to -35° for the northern segment in the y-direction, and from -60° to -40° for the southern segment, in the direction perpendicular to the fault strike, far-field to near-field). This gradient comes from the far-field compression boundary condition applied for x < 0 (north of the Bend), the only source of deviatoric stress at distances greater than the width of the seismogenic layer. Since there is initially no model (thrust) fault capable of dissipating this accumulating fault-normal stress build-up the way the vertical strike-slip fault relieves the shear stress due to the basal shear drag, it is expected that the orientation of the maximum horizontal stress should be at higher angles in the model if the initial stress state in the crust was that prevailing at the creation of the faults. It should also rotate clockwise with time to reach values comparable to that observed ($\sim 70^{\circ}$) far from the SAF, as long as no reverse fault is created to accommodate this compression, especially if the San Andreas fault was modeled as a continuous fault across the Bend. Even though the orientation of $\sigma_H max$ is generally smooth around the model faults, it locally rotates to be either almost perpendicular or sub-parallel to the fault strike near the southern fault in a few places. A comparison with the slip profile at that depth shows a strong correlation between the heterogeneities in slip along strike and these rotations (Figure 13b). No such perturbation is observed on other parts of the faults where the slip profile is smooth, suggesting that the stress rotations are an ephemeral result of local seismicity. In the triangular area South West of the Bend where the tectonic regime is compressive to transpressive, the maximum stress is oriented -70° to the x-axis (e.g., roughly perpendicular to the plate boundary). #### 5.3. Optimal orientations for faulting Figure 8 shows that no significant off-fault shear stress has accumulated at this time in the model. In addition, no new fault would be created at the bend of the plate boundary in the model despite significant (> 100 MPa) shear stress accumulation. This high crustal strength results from the chosen friction coefficient for intact rock (0.8 to 0.9) and the assumption that the crust is hydrostatically pressurized and it prevents CFS from becoming positive. Other assumptions, such as material weaknesses (e.g., lithology contrasts or flaws, pre-existing faults or fractures, or high pore fluid pressures) might have to be invoked to reach a critical stress state in the model crust [Townend and Zoback, 2000]. As previously stated, we do not use the consequences of the initial model geometry to make any conclusion regarding the Big Bend in the San Andreas fault but rather use this "numerical experiment" to study the conditions needed to link two active fault segments in general. Nevertheless, we can investigate how this two-fault system would evolve with time and with what orientations new faults would be created in the tectonic regimes described above. A detailed description of the method to calculate the optimal orientation (strike and dip) for faulting from a full 3D stress tensor can be found in Guéguen and Palciauskas [1992] and is summarized in Appendix C. For simplicity, we chose to represent a map of "beach balls" instead of the map of the two calculated sets of strike and dip angles, more difficult to visualize. The two possible nodal planes were calculated from the full stress tensor resulting from both plate motion and fault slip and approximate the two sets of optimal orientations for failure. The optimal nodal planes at t = 4050 years already satisfy the condition for the initiation of a left-lateral strike-slip fault east of the Bend analogous to the Garlock fault, and thrust belts analogous to the Transverse Ranges (Figure 9). However, for intact rock, the friction angle is smaller than 45° and the optimal planes are not perpendicular. With the high friction coefficient we chose to represent the strength of the intact rock, the angle ψ between σ_1 and the optimal fault strike (in the plane (σ_1, σ_3)) is smaller than for more mature faults with a lower friction coefficient (e.g., # 22 FITZENZ AND MILLER: STRESS ORIENTATIONS AND FORWARD FAULT MODELING 0.6-0.4). Some of the near-fault perturbations, resulting from local stress rotations, can be seen on Figure 9. However, smaller scale maps would be needed to clearly identify all of them. We chose to point to the largest features that were allowing a comparison with actual mapped faults, and not discuss the local perturbations here. #### 6. Relation between fault strength and stress orientations in the model We show results from two different times in the model to demonstrate how slip affects the stress rotations; at t=3450 for the lower pore pressure case during Phase 2 (section 4), and at t=4050 for the higher pore pressure case (Phase 3). The areas of stress rotations match the tips of the areas of significantly larger slip as seen on slip profiles calculated at the same depth (e.g., see Figure 13). These slip profiles show the cumulative slip on each cell. Therefore, the stress orientation patterns are not sensitive to the recent seismicity per se, but to the relative roughness of the integrated slip history at each location. We will now investigate the degree of overpressure on the model faults where stress rotations occur, and how this might be interpreted in terms of the strength of the faults. As already stated in the first sections, pore pressure increases mostly during interseismic periods via pore compaction but also coseismically in the cells adjacent to
the slipping cells, due to pore pressure redistribution. Pore pressures also decrease during earthquakes both due to frictional dilatancy and to the constant hydraulic head boundary condition at the top of the faults. The degree of overpressure λ can therefore drop significantly when a large rupture initiates at depth, where overpressures are more likely to develop, and propagates to the surface. #### 6.1. Mostly strong fault case: Phase 2 of the simulation When a large portion of the fault is strong (i.e., sustains high shear stress) and the portion with the highest pore pressure fails and ruptures to the surface, the whole λ profile after the event is uniform and at hydrostatic pore pressures. It then takes hundreds of years to build-up enough stress to fail this high strength portion of the fault. It appears that stress orientation and cumulative slip are somewhat correlated (see section 5.2), but not that stress is sensitive only to cumulative slip. It should also be sensitive to loading. On the example of Figure 10, we see that almost no seismic slip occurred between t=3450 and t=3700 years. The stress rotations produced at the time of the earthquake (i.e., at the time of the roughening of the slip profile, see Figure 12) can therefore only be modified by the smoothing effect of the large-scale tectonic loading. However, the calculation of the stress changes due to 250 years of plate motion only shows that they are two orders of magnitude smaller than the stress tensor values at t=3450 years. It means that if no significant seismicity happens on the fault, there is no way in the model to dissipate the stress perturbations. As will be discussed later, postseismic relaxation effects could play a key role in this process and will need to be considered in further studies. #### 6.2. Weaker fault case: Phase 3 When the overpressure profiles show a larger heterogeneity and an overall larger degree of overpressure on the fault, as happens after the onset of ductile compaction, the number of moderate size events increases, smoothing the slip profile so that when large events occur, they create a large anomaly in the slip profile, and large stress rotations (+/- 50 degrees) within a 5 to 10 km radius zone of the tips of the slip "anomaly". However, this anomaly may not reflect the slip during the last large event for a long time, but rather the low shear stress (stress drop) areas shrinking due to the numerous moderate size earthquakes, as shown by the good correlation between the bumps in the slip profile, i.e., the sudden changes in the slope of the cumulative slip profile (Figure 13b), the low maximum shear stress areas on and close to the fault, and the stress orientations (Figure 8) at t=4050 years. The original lateral extension of the large ruptures and the time from these ruptures can both be evaluated by comparing the overpressure profiles at t=3950years and t=4050 years (Figure 13a). The peak at -30 degrees (also seen on Figure ??) corresponds to only one point and is results from the proximity of the point where the stress orientation is computed relative to the edge of one of the model fault cell. the reader should therefore not pay attention to the magnitude of the anomaly but rather only note its presence and its sign. As a conclusion, a testable hypothesis derived from these preliminary results is that stress rotations on mostly strong faults are smaller in magnitude, but more persistent in time than those produced by large earthquakes on more overpressured (i.e., weak) faults. This makes sense because ambient deviatoric stresses are high in the "strong fault" case and therefore less readily effected by coseismic stress changes. Besides, the first category shows the lateral extension of the previous large event, and are modified mostly by the next large $(M_w > 6.9)$ events, whereas the tips of the slip anomaly, and therefore the location of the stress rotations is expected to change with time due to the intense moderate seismicity on weaker faults. #### 7. Discussion # 7.1. Choice of the model geometry and implication for the strength of the crust Section 2 presented the simplest tectonic loading yielding model tectonic domains in accordance with those observed in the Big Bend area. The model North America plate is dragged from its base past the Pacific plate. As expected, the resulting shear stress is localized in the ~ 40 km (twice the depth of the loading dislocation) wide zone overlying the plate boundary. The only source of shear stress far from the plate boundary is due to the far-field compression applied at 400 km from the plate boundary, north of the Bend. Therefore at distances from the plate boundary larger than ~ 40 km, the crust in the model is far from being critically stressed, and none of the optimally oriented planes reach failure within the 4000 years of simulations. However surprising, this behavior seems in accordance with some observations. Indeed, both the Mojave block (northeast of the southern segment) and the central valley (east and northeast of the northern segment) seem to behave as rigid blocks with almost no seismicity. As a reminder, we do not include the East California Shear zone in our model. Closer to the plate-boundary, however, the optimally oriented planes for failure identified as thrust faults west of the Bend and left-lateral strike-slip faults east of it do accumulate shear stresses. On the plate boundary itself, the region between the two fault segments accumulates up to 100 MPa of maximum shear stress. Again, despite 4000 years of plate motion and seismicity on the two fault segments, none of these planes reach failure at 8.5 km depth. In these last cases, the boundary conditions are yielding high shear stresses, so that the main limitation for the creation of new fractures is the strength of the intact crust. Because we chose to model two fault segments separated by a locked region with properties of intact (or healed) rock, we could evaluate what it would take to link up the two segments throughout the model Bend. Keeping the cohesion value of 20 MPa (already a rather low value compared to the cohesion of intact granite), and the pore pressure in the crust at hydrostatic levels, the friction coefficient assigned to this portion of the crust would need to be as low as 0.3 for a fracture to be created along the plate boundary. This value is far too low to represent a fracture, unless it needs to be seen as an apparent friction coefficient and really means that the pore pressure needs to be much higher. There are still two alternatives to consider. First, the crust might already host a network of pre-existing failure surfaces. Depending on the elapsed time since their last episodes of slip (either seismic or aseismic) their friction and cohesion coefficients could be much lower than for intact rock. Second, we may need to incorporate flaws or other types of weaknesses into the properties of the model crust. #### 7.2. Stress orientations, fault strength and heat flow From the preceding sections, we gather that, first, the average shear stress on the faults is about 80 MPa in the stronger case (phase 2, before $t \sim 3800$) and is down to 50-60 MPa at the end of the simulation. Second, the average shear stress drop averaged over the whole segment is at least an order of magnitude smaller than the average shear stress, implying that the faults are strong in both phases, according to the definition by *Lachenbruch* and Sass [1992]. For each incremental slip on a subfault, the stress drop is fixed to 25 % of the pre-slip stress, but the subfaults are reloaded by stress transfer from slip on other subfaults, and can also slip several times during the same event, so that the static stress drop can not be determined by model assumptions. Third, the maximum horizontal stress orientations at mid-crustal depth are shown to rotate (smoothly) to a lower angle between 40 and 60° to the fault strike in most of the region within 20 km of the model faults. Noticeable exceptions are close to the tips of the faults (at the transition between active fault and intact rock) where the orientations can rotate to almost perpendicular to the faults, and close to the tips of a low in shear stress on the model faults, where the orientation can become even more fault-parallel. The stress orientations therefore exhibit "middle angles", that can be interpreted as indicative of strong faults [Scholz, 2000], or not [Townend and Zoback, 2001]. Another observation is that the degree of overpressure, when averaged over the fault plane, is lower than 0.6 at all times during the simulation, which might not be considered a severe overpressure. But it is locally as high as 0.75 at depths lower than 6 km. All the usual criteria that could be evaluated with measurable properties are therefore inconclusive. The ultimate test of fault strength is often considered to be the heat flow anomaly measured at the surface and due to heat production from frictional fault slip at depth. The time constant for heat conduction is very large (e.g., millions of years). The heat flow measured in one point at the surface therefore accounts for the integrated effects of all the seismicity that occurred in the volume of rock defined by depth times total lateral offset during millions of years. In order to interpret the results in terms of fault strength, it is usually assumed that the fault is at a steady state. Because geodetic and paleoseismology can give estimates of the average fault slip rate during these periods, one can then infer an estimate of the time and spatial average of frictional strength during the rupture propagation by comparing calculated values for different shear strength depth profiles to actual measurements. Lachenbruch and Sass [1992] show that for an average frictional stress of 100 MPa (strong fault case) and a slip rate of 30 mm yr⁻¹, the average heat production
would be 100 mW m² and the heat flow anomaly after a few million years would equal the background heat flow, which is much greater than what was measured across the San Andreas fault. A natural test for our model would be to calculate the heat flow at the surface due to the model seismicity. However, by nature, our model presents transient features rather than a steady state behaviour. Because we studied a restricted area in the San Andreas fault system during a limited amount of time (~ 4000 years), the two short model fault segments (200 km long) should be considered as the initial faults within an evolving system. The finiteness of the segments precludes the average fault slip rate to be equal to plate velocity within this time-window and also guarantees that stresses will accumulate near the tips of the segments and will fail the brittle crust into new faults. During the 350 years of the weaker phase, the average shear stress on the southern segment is 60 MPa and the average slip rate is 12 mm yr⁻¹. The heat flow due to frictional slip on the southern segment is therefore on the order of $20~\mathrm{mW~m^{-2}}$ assuming the shear strength during failure equals the shear stress. If this situation were to last for a million years or so (which is not likely), this result would still be consistent with heat flow measurements across the San Andreas [Lachenbruch and Sass, 1992]. However, in the last hundred years of the simulation, the slip rate is in fact larger than the average plate velocity. The system had accumulated lots of slip deficit during Phases 1 and 2 (difference between plate motion and fault slip) and release it in Phase 3 because the faults are weakening. An alternative to this "fault-physics based self-building fault system" method is the choice of much longer faults with a simplified physics studied within the framework of long-term crustal deformation models. These models assume uniform fault properties along strike and use present-day GPS measurements to constrain the kinematic boundary conditions. They test for friction coefficients of the fault and for the viscoelastic structure of the lower crust andor upper mantle to match measured stress orientations and heat flow [Lynch and Richards, 2001; Chéry et al., 2001]. Once the initial conditions (unstressed viscoelastic material) no longer influence the model behaviour [after 6000 years in the case of Lynch and Richards, 2001], they compute constant average fault-slip rates. They either look at the model behavior on a cross section at the center of the fault to avoid edge effects that they consider as errors [Lynch and Richards, 2001] or consider that the plane perpendicular to the fault strike is a symmetry plane, implying that the fault is "infinite" [Chéry et al., 2001]. In the latter case, the authors acknowledge that other faults may form progressively in the surrounding crust, and they add a strain-softening term to account for the decrease of the crustal strength due to these faults. 7.2.1. Comment on frictional strength evaluation. The elastic loading at the base of the model causes much greater shear stresses at depth than in the shallower parts of the fault in a way that can not be approximated by a linear trend for the whole depth range. The shear stress averaged over the southern segment is about 60 MPa (Figure 5), but varies a lot along strike between 50 and 70 MPa and in depth (e.g., ~30 MPa at 5 km depth, ~ 50 MPa at 10 km, and ~150 MPa at 18 km depth). Lachenbruch and Sass [1980] showed that the heat anomaly measured above a fault with mostly deep slip was not only slower to appear, but also smaller in amplitude. It is recorded at the end of a time step, i.e., after the arrest of an event on one of the fault segments and does not reflect the dynamic shear stress acting during the ruptures but rather the static shear stress sustained by the fault segments. In the model, the imposed reduction in friction on a cell from static to dynamic once it slipped is very simple, but the effective evolution of the strength of a cell throughout the "quasi-static" propagation is very complex. Miller [2002] showed the pseudo-dynamic weakening behavior due to stress transfer. Another aspect is related to the pore pressure redistribution scheme of the present model. Contrary to Miller [2002], pore pressures are redistributed only once the fault is stable with respect to its stress state. This can result in pore pressures being equilibrated within a patch of the fault that previously had a very different pore pressure. In this case, the strength of the previously low pressure (often shallower) cells would drop dramatically, leading to the further propagation of the rupture, but at a lower (dynamic) stress level. The non-linear stress profile, added to the likely weakening of the fault during rupture just discussed, would lead to an heat flow anomaly more difficult to detect than the generic case. In the extreme case when the rupture reaches the constant hydraulic head boundary condition at the top of the fault, resulting in outflow, the fluid flow would probably perturb the heat signal caused by the earthquake. 7.2.2. Model fault slip rate. The other ingredient for heat flow calculations is the fault slip rate. It is also very heterogeneous, both spatially and in time. Averaged over the last 350 years, slip rate on the southern segment is about 12 mm yr⁻¹, ranging between 4 and 17 mm yr⁻¹ along strike. Over the last 100 years, it is more than 3 times higher, due both to the previously stored slip deficit and to the lower strength of the fault and the subsequent denser occurrence of small-size earthquakes. The expected next steps in the evolution of the modeled fault system is the breaking of the Bend and of new faults near the tips of the prescribed faults, that would release both shear stresses in the yet unbroken regions and the pore pressure in the present faults. The longer the fault becomes, the more the slip rate is likely to increase. However, it is difficult to describe what a steady state would be in such an evolving fault system, where new faults are likely to be created and other segments likely to be abandoned. As a conclusion, a proper calculation of heat flow would be an integration over time of all incremental elements (strength \times slip) for each depth during each earthquake for simulations of hundreds of thousands or millions of years. This is beyond the scope of the present study. #### 7.3. Postseismic relaxation In section 5.2 we investigated the time extent of the perturbations in the stress orientations. One process we did not include is the smoothing of the stress state due to postseismic relaxation. In a preliminary study of the influence of postseismic relaxation for the same Big Bend setting, Fitzenz et al. [2002] added a viscoelastic half-space below the seismogenic layer and calculated the toroidal component of the relaxation due to the $M_w > 6$ events only (to save computional time). They integrated this effect into the forward model by linearizing the sum of the stressing rates due to all past relevant earthquakes at a given time, to be able to keep the quasi-static approach and calculate the exact time step to the next rupture. They show that some 15 years after the first large earthquake, the average properties on the faults and the frequency-size statistics start departing significantly from the no relaxation case. # 8. Conclusion Our aim was to distinguish the large-scale stress patterns (or tectonic regimes) resulting from the boundary conditions alone from those due to fault slip, and to identify measurable stress indicators of the state of the faults both for a stronger fault case and weaker case. Because we studied a restricted area in the San Andreas fault system during a limited amount of time (~4000 years), the two short model fault segments should be considered as the initial faults within an evolving system. We designed a forward regional model of the southern San Andreas fault system near the Big Bend that includes tectonic loading, fault zone hydraulics and stress transfer. The prescribed fault system is made of two 200 km long strike-slip fault segments oriented at 20° of each other separated by a region that has the properties of intact rock (e.g., lithified fault segment). The introduction of ductile compaction and shear creep after the first large ruptures on the two active fault segments induced a rapid increase in pore pressure and led to fault weakening, allowing for the study of both mostly strong faults (before ductile compaction and shear creep) and weaker faults (after their introduction). The stress orientations close to the model fault exhibit middle angles (40 to 50°) relative to the fault strikes, consistent with results from Hardebeck and Hauksson [2001] and Townend and Zoback [2001], and are at a higher angle far (distances greater than 70 km) from the faults, especially in the area northeast of the Bend where the far-field compression is the dominant source of deviatoric stress. The orientation of the maximum horizontal stress in this far-field area (east of the northern segment) is expected to rotate clockwise with time to reach values comparable to that observed ($\sim 70^{\circ}$ relative to the strike of the northern segment, i.e., x-axis), especially if the San Andreas fault was modeled as a continuous fault across the Bend. Significant local rotations are observed due to fault slip. They are localized in a narrow zone centered on the fault ($\pm 5 - 10$ km), where the cumulative slip departs from the average slip on the profile at the depth of the calculation. They are not persistent with time, unless the faults are very strong and it takes a long time to again smooth the slip profile. These migrations of the stress rotations could be tested in nature. In the longer-term and at a larger scale, the 4,000 years of seismicity on the model faults incrementally changes
the stress state in the model region, so that the areas in transpressive regimes tend to migrate North toward the Bend (something plate motion alone could not trigger in 100,000 years, see section 2). We decided to separate the northern and the southern segment by intact rock for mathematical convenience. Although not appropriate for the geology of the San Andreas fault at this location, it allowed us to test in a generic way what it would take to link up two fault segments. An intriguing conclusion of this study is that it is very hard to break intact rock. Indeed, even the region on the plate boundary between the two fault segments does not break within the 4000 years of the simulation despite a high shear stress concentration. Pockets of high pore pressure, pre-existing fractures, material weaknesses all could lower the failure criterion. Their occurrence (or not) in the crust surrounding the plate boundary in southern California near the Bend needs to be further investigated. The many faults mapped close to the San Andreas in other areas certainly point to the importance of pre-existing weaknesses [e.g., the flower structures identified close to the San Andreas fault near Parkfield, M.J. Rymer and Goldman, 2003]. But the main question one can ask after such a study is: Are the model faults weak or strong? The magnitude of shear stress and the ratio of stress drop to shear stress tend to point to strong faults, while stress orientations (middle angle) do not allow a conclusion. Finally, the distribution of pore pressure, in particular below 6 km depth, would definitely point to a strong fault during Phase 2 and a weak fault during Phase 3. Unfortunately, pore pressures are very difficult to infer, and impossible to measure at these depths. A last argument to distinguish between weak and strong is usually the heat flow argument. Strong faults are purported to produce a large heat flow anomaly due to frictional sliding. In the model, the average fault-slip rate is very time-dependent, and is about half the plate velocity over the last 350 years, due to the fact that the faults are finite. Together with a static shear stress on the order of 50 MPa, the estimated average heat flow is on the order of 20 mW m⁻², and varies along strike. Since the fault system did not reach a steady state, this heat flow estimation can not be extrapolated to time periods long enough to compare with the time constant for heat conduction and no conclusion can be drawn this way regarding the strength of the fault segments. Since individual faults in real fault systems, such as the San Andreas Fault System in the San Francisco Bay area, can exhibit very variable slip rates with time [e.g., constant slip rates for less than 2 million years on some faults, *Wakabayashi*, 1999], it is important to identify criteria to evaluate fault strength, other than heat flow. In our model, the two fault segments do exhibit different behaviors from Phase 2 to Phase 3, differences which could be very important, were we to assess the seismic hazard they represent. Unless boreholes can be drilled through the faults at seismogenic depths and pore pressure, stresses, and heat flow can be measured in the fault zone itself, only two sets of observable parameters distinguish the two Phases in this study. They are 1) the increase in the number of small to medium-sized earthquakes in the fault weakening phase, and 2) the rotations of the maximum horizontal stress close to the fault following a large event, and how they persist and how their location changes with time. The former could be evidenced by changes in b-values whereas the latter could be seen on focal mechanism inversions, provided enough earthquakes happen to see a time evolution in the resulting stress orientations. Changes in the seismicity (e.g., number of events per time-window, size of events) were also shown to be a proxy for the stress state on faults for constant strength numerical models [Ben-Zion et al., 2003]. In that study, they were used to identify periods during which large (system-sized) earthquakes could happen. In a future work, it would be interesting to compare the statistics of this model to similar ones computed from our simulation for Phase 2 and 3, using the more complex strength model (where the strength of the fault segments is highly variable in time and spatially heterogeneous). These preliminary modeling results demonstrate the potential utility of regional fault models for investigating some fundamental issues in fault mechanics and regional tectonics. In particular, they enable a treatment of the 3-dimensionality of fault systems and permit the test of theories developed for 1-D models or homogeneous faults infinite along strike. Although the results of the regional model presented here demonstrate that the model and its boundary conditions have most of the ingredients to produce a realistic numerical analog to the SAF, additional studies are necessary. Specifically, the questions of 1) the initial shear stress in the crust, 2) the continuity of the model faults across the Bend, 3) the existence or not of steady-state behavior in natural fault systems, 4) the dynamic weakening, and 5) the importance of postseismic relaxation need to be addressed. In addition, the behavior of the model faults is strongly influenced by 1) their pore pressure, so additional studies are needed to better constrain flow in and around fault zones and mechanisms of porosity reduction; 2) the length of the active part of the fault, pointing to the need for the modeling of fault strengthening and lithification. #### APPENDIX A. Interseismic permeabilities The interseismic in-plane permeabilities are calculated from the relationship [Brace, 1978]: $$k = k_o \phi^3, \tag{1}$$ where k is the permeability, ϕ is the porosity and k_o is proportional to the hydraulic radius. We keep k_o very small and constant during interseismic periods, that is, from right after a rupture to the onset of the next event. This assumption is questionable since the sealing of the hydraulic paths created during faulting probably takes time, but this is beyond the scope of the present study. Faulkner and Rutter [2001] measured fault gouge permeabilities of $\sim 10^{-18}$ m² in a direction parallel to the fault plane in the Carboneras (Spain) strike-slip fault. They also measured an in-plane anisotropy, with vertical permeability (k_z) more than one order of magnitude higher than the horizontal permeability (k_x) . Rawling et al (2001) review fault gouge permeabilities from $\sim 10^{-20}$ m² to $\sim 10^{-19}$ m². Assuming that in-plane permeability is anisotropic and a cubic function of porosity, we get $k_x = k_{ox}\phi^3$ and $k_z = k_{oz}\phi^3$, with $k_{ox} = 10^{-15}$ m² $< k_{oz} = 10^{-13}$ m². # APPENDIX B. Interseismic compaction and shear creep The total interseismic pore pressure change rate is given by the sum of a positive compaction term corrected to give smaller pore pressure increases as the porosity decreases to values close to the minimum porosity and a negative leakage term: $$\frac{\partial P_f}{\partial t} = -\frac{(P_f - \sigma_n)}{\beta_f \phi} \frac{2}{\eta_i} \left[\frac{13 + 4\phi}{63 + 36\phi} \right] \left[\frac{\phi - \phi_{\min}}{\phi_{\max} - \phi_{\min}} \right]^a - \frac{P_f - P_h}{t_h} \tag{1}$$ where P_f pore pressure and σ_n normal stress within the fault core, η_i is the intrinsic viscosity of the grains (i.e., the deformation of individual grains is time-dependent), P_h is the hydrostatic pore pressure of the surrounding rocks and t_h is the out-of plane diffusion time. For simplicity, we keep the maximum porosity constant $\phi_{max} = 9\%$ and the residual porosity $\phi_{min} = 2\%$. The exponent a controls the rapidity of the fall off of the compaction rate when ϕ becomes close to ϕ_{min} . The shear creep velocity V is a function of the fault core width W, the driving shear stress, and the viscosity of the fault zone. The latter is expressed as a function of porosity and the intrinsic viscosity of the grains, resulting in equation 2: $$V = \tau W \frac{13 + 4\phi}{9\eta_i}, W = W_0 + \epsilon D \tag{2}$$ Note that V is the velocity of one wall of the fault zone with respect to the other wall and that W evolves as a function of cumulative slip D (ϵ is a constant) from an initial width W_0 . For computational convenience, we update stress transfer from creep slip using Okada's (1992) analytical solutions every 50 years. Where not otherwise specified, the model parameters are given in Table 3.1 of Fitzenz and Miller [2003]. ## APPENDIX C. Optimal orientation for faulting in the general case of a 3D stress tensor First, if the three principal stresses σ_1 , σ_2 and σ_3 are distinct, for a given unit normal \vec{n} to a plane Π , the normal (σ) and shear (τ) stresses acting on Π satisfy: $$\begin{cases} \sigma_1 n_1^2 + \sigma_2 n_2^2 + \sigma_3 n_3^2 = \sigma \\ \sigma_1^2 n_1^2 + \sigma_2^2 n_2^2 + \sigma_3^2 n_3^2 = \sigma^2 + \tau^2 \\ n_1^2 + n_2^2 + n_3^2 = 1 \end{cases}$$ (1) Solving for (n_1, n_2, n_3) this Vandermonde equation system, we get for distinct principal stresses: $$n_1^2 = \frac{(\sigma_3 - \sigma)(\sigma_2 - \sigma) + \tau^2}{(\sigma_1 - \sigma_3)(\sigma_1 - \sigma_2)} \tag{2}$$ and n_2^2 and n_3^2 can be obtained similarly by circular permutation. Therefore, the equations $n_i = constant$, i=1,2,3, define three families of circles, the circle $n_2 = 0$ being the locus of the maximum shear stress (circle with ordinate intercepts at σ_3 and σ_1). This is equivalent to saying that the principal stress direction associated with σ_2 belongs to the optimal fault plane (for a maximum shear stress). Second, the optimal angle between σ_1 and the strike of the fault plane in the plane defined by (σ_1, σ_3) is calculated by
maximizing the Coulomb failure stress, and is given by $\psi = \frac{1}{2}tan^{-1}(-\frac{1}{\mu})$, where μ is the friction coefficient [see King et al., 1994, for the details of this calculation in the 2D case]. This defines a second vector lying in the fault plane and together, the two vectors enable the calculation of both strike and dip angles of the optimal plane. Since + and - ψ are equally valid, a given principal stress tensor yields two sets of strike and dip angles at each location. We can calculate the new absolute Coulomb Failure Stress on these planes, and check if new failure planes would be created. This method is different from the usual hypothesis in ΔCFS studies [e.g., King et al., 1994; Stein et al., 1997], where faults of all orientations are assumed to already exist, and where the ψ angle is used as a fitting parameter to fit areas of increased CFS to aftershock locations. Acknowledgments. The authors want to thank Fred Pollitz, Bob Simpson, Jim Savage, and Colin Williams for insightful discussions, and the internal review crew for their useful comments on the manuscript. Thanks also to two anonymous reviewers, Susan Ellis and Joan Gomberg for their comments and suggestions. This research was partially supported by the Swiss National Fund, program 2100-054121.98/1 and by a Swiss National Fund post-doc fellowship. ## References - Andrews, D., A fault constitutive relation accounting for thermal pressurization of pore fluid, J. Geophys. Res., 107, 2002. - Argus, D. F., and R. G. Gordon, Current Sierra Nevada-North America motion from very long baseline interferometry: Implications for the kinematics of the western United States, *Geology*, 19, 1085–1088, 1991. - Ben-Zion, Y., M. Eneva, and Y. Liu, Large earthquake cycles and intermittent criticality on heterogeneous faults due to evolving stress and seismicity, *J. Geophys. Res.*, 108, 2307,doi:10.1029/2002JB002,121, 2003. - Brace, W., A note on permeability changes in geologic material due to stress, *Pure Appl. Geoph.*, 116, 627–633, 1978. - Brereton, R., and B. Muller, European stress contributions from borehole breakouts, Phil. Trans. Roy. Soc. London A, 337, 165–179, 1991. - Chéry, J., M. D. Zoback, and R. Hassani, An integrated mechanical model of the San Andreas fault in central and northern California, *J. Geophys. Res.*, 106, 22,051 (2001JB000,382), 2001. - Faulkner, D. R., and E. H. Rutter, Can the maintenance of overpressured fluids in large strike-slip fault zones explain their apparent weakness?, *Geology*, 29, 503–506, 2001. - Fitzenz, D. D., and S. A. Miller, A forward model for earthquake generation on interacting faults including tectonics, fluids, and stress transfer, J. Geophys. Res., 106, 26,689-26,706, 2001. - Fitzenz, D. D., and S. A. Miller, Fault compaction and overpressured faults: Results from a 3D model of a ductile fault zone, Geophys. J. Int., 155, 111–125, 2003. - Fitzenz, D. D., F. Pollitz, and S. A. Miller, First results of a physics-based, integrative model of the San Andreas fault system near the Big Bend including fluids, tectonics, and post-seismic relaxation, Eos Trans. AGU, Fall Meet. Suppl., Abstract T71D-1191, 2002. - Gratier, J.-P., P. Favreau, and F. Renard, Modeling fluid transfer along Californian faults when integrating pressure solution crack-sealing and compaction processes, J. Geophys. Res., 108, 2104–2129, 2003. - Guéguen, Y., and V. Palciauskas (Eds.), Introduction à la physique des roches, Hermann, 1992. - Hardebeck, J. L., and E. Hauksson, Role of fluids in faulting inferred from stress field signatures, Science, 285, 236–239, 1999. - Hardebeck, J. L., and E. Hauksson, Crustal stress field in southern california and its implications for fault mechanics, J. Geophys. Res., 106, 21,859–21,882, 2001. - Hickman, S., and B. Evans, Growth of grain contacts in halite by solution transfer: Implications for diagenesis, lithification, and strength recovery, in Fault Mechanics and Transport Properties of Rocks, Int. Geophys. Ser., pp. vol.51, edited by B. Evans and T.-f. Wong, pp. 253–280, Academic, San Diego, Calif., 1992. - Hubbert, M. K., and W. W. Rubey, Role of fluid pressure in mechanics of overthrust faulting, *Bull. Geol. Soc. Am.*, 70, 115–166, 1959. - Ikeda, R., Y. Iio, and K. Omura, In situ stress measurements in NIED boreholes in and around the fault zone near the 1995 Hyogo-ken Nanbu earthquake, Japan, *Island Arc*, 10, 252–260, 2001. - King, G. C. P., R. S. Stein, and J. Lin, Static stress changes and the triggering of earth-quakes, *Bull. Seismol. Soc. Am.*, 84, 935–953, 1994. - Lachenbruch, A. H., and J. H. Sass, Heat flow and energetics of the San Andreas fault zone, *J. Geophys. Res.*, 85, 6185–6222, 1980. - Lachenbruch, A. H., and J. H. Sass, Heat flow from Cajon Pass, fault strength, and tectonic implications, *J. Geophys. Res.*, 97, 4995–5015, 1992. - Lockner, D. A., and N. Beeler, Stress-induced anisotropic poroelasticity response in sandstone, *Proceedings, ASCE Conference, Seattle, WA*, 2003. - Lynch, J., and M. Richards, Finite element models of stress orientations in well-developed strike-slip fault zones: Implications for the distribution of lower crustal strains, *J. Geo-phys. Res.*, 106, 26,707 (2001JB000,289), 2001. - Michael, A., The use of focal mechanisms to determine stress: a control study, *J. Geophys.*Res., 92, 357–368, 1987. - Miller, S. A., Properties of large ruptures and the dynamical influence of fluids on earth-quakes and faulting, *J. Geophys. Res.*, 107, 2182, doi:10.1029/2000JB000,032, 2002. - Miller, S. A., A. Nur, and D. L. Olgaard, Earthquakes as a coupled shear stress-high pore pressure dynamical system, *Geophys. Res. Lett.*, 23, 197–200, 1996. - Miller, S. A., Y. Ben-Zion, and J.-P. Burg, A three dimensional fluid-controlled earthquake model: Behavior and implications, *J. Geophys. Res.*, 104, 10,621–10,638, 1999. - M.J. Rymer, M. R. C., and M. Goldman, Structure of the San Andreas fault zone as revealed by surface geologic mapping and high-resolution seismic profiling near Parkfield, California, [abs.]: European Geophysical Society-American Geophysical Union-European Union of Geophysicists Joint Assembly, Nice, France, 2003. - Moore, D. E., D. A. Lockner, H. ito, and R. Ikeda, Correlation of deformation textures with laboratory measurements of permeability and strength of Nojima fault zone core samples, in *Proceedings of the International workshop on the Nojima fault core and borehole data analysis*, pp. USGS Open–file report 00–129, pp.159–166, 1999. - Morrow, C., D. A. Lockner, S. Hickman, M. Rusanov, and T. Rockel, Effects of lithology and depth on the permeability of core samples from the kola and ktb drillholes, *J. Geophys. Res.*, 99, 7274–7623, 1994. - Nur, A., and J. D. Byerlee, An exact effective stress law for elastic deformation of rock with fluids, *J. Geophys. Res.*, 76, 6414–6419, 1971. - Okada, Y., Surface deformation due to shear and tensile faults in a half-space, *Bull. Seismol. Soc. Am.*, 75, 1135–1154, 1985. - Okumura, K., T. Yoshioka, and I. Kuscu, Faulting on the North Anatolian fault in these two millenia, in *USGS Open-file report 94-568*, pp. pp.143–144, 1993. - Prescott, W. H., J. Savage, J. L. Svarc, and D. Manaker, Deformation across the Pacific-North America plate boundary near San Francisco, California, *J. Geophys. Res.*, 106, 6673–6682, 2001. - Provost, A., and H. Houston, Orientation of the stress field surrounding the creeping section of the san andreas fault: Evidence for a narrow mechanically weak fault zone, J. Geophys. Res., 106, 11,373–11,386, 2001. - Rice, J. R., in Fault Mechanics and Transport Properties of Rocks, Int. Geophys. Ser., chap. Fault stress states, pore pressure distributions, and the weakness of the San Andreas fault, pp. 9885–9907, edited by B. Evans and T.-F. Wong Academic, San Diego, Calif., 1992. - Scholz, C. H., Evidence for a strong San Andreas fault, Geology, 28, 163–166, 2000. - Shen, Z.-K., et al., The SCEC crustal motion map, version 3.0, http://epicenter.usc.edu/cmm3/, 2003. - Sibson, R. H., Fault-valve behavior and the hydrostatic-lithostatic fluid pressure interface, Earth-Science Reviews, 32, 141–144, 1992. - Simpson, R. W., Quantifying Anderson's fault types, J. Geophys. Res., 102, 17,909–17,919, 1997. - Sleep, N., Ductile creep, compaction and rate and state dependent friction within major fault zones, J. Geophys. Res., 100, 13,065–13,080, 1995. - Sleep, N., and M. L. Blanpied, Creep, compaction and the weak rheology of major faults, Nature, 359, 687–692, 1992. - Stein, R. S., A. A. Barka, and J. H. Dieterich, Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering, *Geophys. J. Int.*, 128, 594–604, 1997. - Talwani, P., J. S. Cobb, and M. F. Schaeffer, In situ measurements of hydraulic properties of a shear zone in northwestern South Carolina, *J. Geophys. Res.*, 104, 14,993–15,003, 1999. - Terzaghi, K., Die berechnung der durchlssigkeitsziffer des tones aus dem verlauf der hydrodynamischen spannungserscheinungen, Sber. Adad. Wiss., 132, 105-, 1923. - Townend, J., and M. D. Zoback, How faulting keep the crust strong, Geology, 28, 399–402, 2000. - Townend, J., and M. D. Zoback, Implications of earthquake focal mechanisms for the frictional strength of the san andreas fault system, in The Nature and Tectonic Significance of Fault Zone Weakening, Special Pub. of the Geol. Soc. of London, 186, pp. 13–21, 2001. - Tsukahara, H., R. Ikeda, and K. Omura, In-situ stress measurement in an earthquake focal area, *Tectonophysics*, 262, 281–290, 1996. - Wakabayashi, J., Distribution of displacement on and evolution of a young transform fault system: the northern San Andreas fault system, California, Tectonics, 18, 1245–1274, 1999. - Zhu, L., and D. Helmberger, Advancements in source estimation techniques using broadband regional seismograms, Bull. Seismol. Soc. Am., 86, 1634–1641, 1996. - Zoback, M. D., and J. H. Healy, In situ
stress measurements to 3.5 km depth in the Cajon Pass scientific research borehole: Implications for the mechanics of crustal faulting, J. Geophys. Res., 97, 5039-5057, 1992. (a) Figure 1. (a) Seismotectonic map of Southern California showing the major fault traces (thin lines) and the seismicity between October 2000 and September 2001 (recorded by SCSN/TriNet). The black arrows show the boundary conditions for our model. The thick gray lines show the two segments of the San Andreas fault included in our simulations. (b) 3D block diagram of the initial model (no fault). Table 1. The 9 end-member tectonic regimes | Vertical | R=0 | R=0.5 | R=1 | |-----------------------------|-------------------------|--|-------------------------| | principal stress σ_v | $(\sigma_2 = \sigma_3)$ | $(\sigma_2 = (\sigma_1 + \sigma_3)/2)$ | $(\sigma_1 = \sigma_2)$ | | $\sigma_v = \sigma_3$ | reverse strike-slip | pure reverse | constrictive | | $\sigma_v = \sigma_1$ | radial extensive | pure normal | normal strike-slip | | $\sigma_v=\sigma_2$ | reverse strike-slip | pure strike-slip | normal strike-slip | Figure 2. Main tectonic domains calculated from the stress tensor at 8.5 km depth for 100,000 years of basal shear drag and far field compression. The plate boundary lies in a strike-slip regime, while transpression is shown to develop south-west of the Bend (e.g., transverse ranges). The coordinates are centered at the Bend. Figure 3. Map of Coulomb Failure Stress (CFS) calculated at 8.5 km depth due to 100,000 years of tectonic loading. The two modeled fault segments of the San Andreas Fault (black lines) are shown to be the first faults to accumulate enough stresses to reach the failure criterion. The southern segment accumulates less CFS due to the high normal stresses. The white color corresponds to $CFS \ll 15$ MPa. Figure 4. Time evolution of the properties on the northern segment averaged over the whole plane. Top to bottom: shear stress, effective stress, the degree of overpressure λ and the amount of creep slip. The first part (t=0 to $t\sim 2500$ yr) is the stress build-up phase. The first large events occur for t>2800 years and induce large drops in pore pressure. Creep slip and ductile compaction initiate at t=3750 yr. Figure 5. Time evolution of the properties on the southern segment averaged over the whole plane. Same as Figure 4. Because of the 20° angle between the fault strike and plate motion, the normal stress build-up rate is larger than in the previous case, initially leading to a stronger fault. As ductile compaction initiates, it leads to a larger compaction rate and faster overpressurization of the fault. The average amount of creep is 2/3 the creep slip on the northern fault. Figure 6. Seismicity timelines and frequency-magnitude statistics. (a) for the northern strike slip fault segment; (b) for the southern segment. The arrows show the onset of shear creep and ductile compaction at t = 3750 yr. The density of the seismicity reflects the strength of the faults shown in figures 4 and 5. Both faults exhibit Gutenberg-Richter laws with a b-value of 0.9 (shown by the straight line). Figure 7. Map of evolved tectonic regimes, resulting from \sim 4000 years of plate motion and model seismicity, calculated at mid-seismogenic depth. Compare to Figure 2 to notice the similarities and the differences in the patterns due to fault slip. Figure 8. (a) Maximum shear stress (colors) and $\sigma_H max$ orientations (characteristic trends, white lines, and local perturbations, red lines); (b) orientation of $\sigma_H max$ relative to x-axis. Both maps are calculated at 8.5 km depth. τ_{max} is maximum in a 40 km wide zone (~ 70 MPa) centered at the plate boundary, and is largely perturbed near the faults (e.g., stress drops and stress transfer). σ_1 is consistently oriented $\sim 45^o$ to the northern segment, and $\sim 55^o$ to the southern segment in a 20 km wide band. However, it locally rotates to be either almost perpendicular or sub-parallel to the fault strike. Figure 9. "Beach balls" calculated t = 4050 yr at 8.5 km depth superposed onto the topography map of southern California (after the ETOPO5 data set, U.S. National Geophysical Data Center). Most subvertical strike-slip faults parallel to the fault segments are right-lateral east of the plate boundary, whereas the ones perpendicular to the two segments are left-lateral, with an orientation analogous to that of the Garlock fault (shaded area) just east of the Bend. The faults that would develop in the model west of the Bend have a strong reverse component, analogous to the Transverse Ranges. Figure 10. Maximum horizontal stress orientation, cumulative slip and overpressure profiles at 8.5 km depth, at t=3400 (green), t=3450 (blue), and t=3700 years (black) on the southern segment (i.e., during Phase 2). The hatched region between ~ 20 and 120 km along strike highlights the variations due to a $M_w > 6.9$ event that occurred at t=3446 years. The departures from the average σ_{Hmax} orientation of -50° reflect changes in slope in the cumulative slip profiles and are not correlated with the λ profile. The peak at 80 km is due to a point close to the edge of a dislocation (i.e., singularity). Figure 11. Map of maximum shear stress at 8.5 km depth, at t=3450 years. The black lines show the typical orientation of σ_{Hmax} whereas red lines show perturbations. The last large earthquake happened at t=3446 years on the Southern fault and is responsible for the stress drop around x=90 and 115 km. White corresponds to $\tau_{max} < 10$ MPa. **Figure 12.** Map of maximum horizontal stress orientation relative to the x-axis at 8.5 km depth, at t=3450 years. The last large earthquake happened at t=3446 years on the Southern fault and is responsible for the rotations around x=90 and 115 km. The solution of o (a) (b) 80 100 120 Distance along strike, km 180 40 Figure 13. (a) Cumulative slip (solid lines) and overpressure (dotted lines) profiles at 8.5 km depth, at t=3950 and t=4050 years on the southern segment (i.e., during Phase 3). The hatched area between \sim 100 and 125 km along strike reflects a $M_w > 6.9$ event that occurred at t=4030 years. (b) Orientation of σ_{Hmax} w.r.t. the x-axis and comparison with the slip and overpressure profiles at t=4030 years. The peak in the orientation profile at $80~\rm{km}$ is due to a point close to the edge of a dislocation (i.e., singularity). April 6, 2004, 5:52pm